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SUMMARY

This report presents results of example problems solved using the

Substructure Function Generator Program and the Substructure Synthesis

Program, which are described in "Advanced Substructuring Techniques -

Final Report," LMSC-HREC DZ25003.

To illustrate the advantages of "uniform acceleration modes" as sub-

structure displacement functions, vibrational characteristics of a branched-

beam model of a space shuttle launch vehicle were computed using several

combinations of types of functions. The results were compared with es-

sentially exact solutions computed by the dynamic analysis version of

SNAP/V70F.

Also presented are results of a transient response analysis of the beam

model, to illustrate the function of Substructure Synthesis Program's response

routines.
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Section 1

INTRODUCTION

Reference 1 describes in detail the computer programs developed under

Contract NAS8-30520.

The Substructure Function Generator Program is an adaptation of the

Lockheed-Huntsville Structural Network Analysis Program, SNAP. Input

to this program consists of a definition of a finite element model of a sub-

structure, and specification of the type and number of displacement functions

to be generated. Primary output is a substructure data file (tape, drum, etc.)

containing the substructure mass and stiffness matrices expressing kinetic

and potential energies as quadratic forms in coefficients of the displacement

functions, etc.

The Substructure Synthesis program forms complete system mass,

stiffness, and damping matrices, computes system modes and frequencies,

and executes transient response calculations. Input to this program consists

of the array of substructure data files generated by the Function Generator

program for individual substructures, and data cards defining the position

and interconnection of the substructures, damping data, forcing function

details, function control parameters, etc., as described in detail in Ref. 1.

The analyst also controls the particular sets of substructure displacement

functions actually used by the Substructure Synthesis program in each analysis

(i.e., not all of the functions stored in the substructure data files need be

used in a given analysis).

The following types of substructure displacement functions are generated

by the Function Generator Program:

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER



LMSC-HREC D162799-A

1. Rigid body modes

2. Static functions associated with juncture node motion
(called "restraint modes" in Refs. 2 and 3)

3. Undamped free vibrational modes

4. Arbitrary functions corresponding to any static loading
specified by the analyst

5. Uniform acceleration modes.

The first four types of functions are widely used in various substructure/

modal synthesis programs; however, the uniform acceleration modes

(Whetstone, Ref. 4) apparently are not widely used at this time. The basis

of these functions is reviewed in Section 2, and numerical results are given.

2
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Section 2

SUBSTRUCTURE DISPLACEMENT FUNCTIONS

One of the objectives of the substructure/modal synthesis approach is to

obtain relatively low-order system mass and stiffness matrices which represent

with reasonable accuracy the low-frequency dynamics of large, complicated

structures. If properly implemented, the procedure yields very accurate

results; for example, Refs. 5 and 6 report calculations of Saturn IB and

Saturn V launch vehicle lateral modes which closely agree with experimental

data over a wide range of frequencies. Central problems arising in applica-

tion of the procedure are (1) choice of the number, form, and composition of

substructures, and (2) choice of substructure displacement functions. These

choices are, of course, closely interrelated. If many small substructures

are employed, fewer (and simpler) displacement functions may be used for

each substructure than if only a few large substructures are used.

For a given system mode, the motion of any component substructure

may be considered to be composed of rigid body motion plus deformation;

that is, the motion of a point in the substructure may be written as U sin(t,

where

U=D+XR+b , (1)

and

U l D X3 ° 2 R 

U = U , D = D
2

, X = -X
3

0 X , R = R
2

, and 6 = 62 . (2)

U D X
2

-X 1°R (2)3

3

LOCKHEED -HUNTSVILLE RESEARCH & ENGINEERING CENTER



LMSC-HREC D162799-A

In the above equations, U. is the total direction i displacement of the point,

the D.'s and R.'s are direction i rigid body displacement and rotation com-
1 1

ponents, respectively, the Xi's are position coordinates (right-hand, rec-

tangular) of the point relative to the rotation center, and the 6.'s represent

d eformation.

The dynamic forces acting on the substructure are (1) edge forces exerted

by other substructures on the juncture nodes, and (2) distributed inertia forces.

Where m is mass density, the inertia force distribution is proportional to

m U. Accurate solutions will be obtained if, in addition to rigid body modes,

we use as substructure displacement functions "static modes" corresponding

to sets of static loadings which can closely approximate the actual dynamic

forces. Static modes produced by unit motions of the juncture nodes (the

previously-mentioned "restraint modes") are essential for this purpose.

However, the customarily-used "fixed-constraint normal modes" generally

do not provide a very good means of representing the effects of distributed

inertia forces. A class of functions well-suited for this purpose may be

identified through examination of the nature of the distributed inertia forces.

If the substructures are sufficiently small, the third term (deformation)

in tq. (1) is small compared with the first two (rigid body motion). Accordingly,

it is advantageous to include in each set of substructure displacement functions

a set of functions representative of inertia force distributions associated with

arbitrary rigid body motion. In general three-dimensional applications, six

of these functions, which will be called "uniform acceleration modes" should

be used. They are static modes produced by the following loading conditions:

* distributed forces equivalent to the inertia forces associated
with constant linear acceleration of the substructure as a
rigid body (i.e., dead weight loadings) in each of three non-
parallel directions, and

* distributed forces equivalent to the inertia forces associated
with constant angular acceleration of the substructure as a
rigid body about each of three non-parallel axes.

4
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All complete sets of rigid body modes, static modes associated with juncture

node motion, and uniform acceleration modes are equivalent, regardless of

the boundary conditions used in computing the uniform acceleration modes.

That is, if a general three dimensional substructure contains n juncture

nodes, a complete basis for constructing all such functions is provided by

any set of displacement functions composed of (1) six independent rigid body

modes, (2) 6(n-1) independent static modes associated with juncture node

motion, and (3) six independent uniform acceleration modes (regardless of

the restraint conditions imposed at the juncture nodes for purposes of com-

puting the uniform acceleration modes).

Uniform acceleration modes are inexpensively calculated. Each one

requires much less computer execution cost than a typical normal mode.

A convenient and meaningful measure of the accuracy of a system mode,

as computed by the substructure technique (or any Rayleigh-Ritz method) is

afforded by a comparison of the inertia force distribution as computed from

equations of motion with the external force distribution computed from basic

force-deflection (elasticity) relations. If the distributions so computed are

equal, the solution is exact; if not, the difference is a measure of the con-

straint error associated with the particular set of displacement functions

used. In this connection, it will be convenient to regard all substructure

displacement functions as static modes (including vibrational modes, such

as "fixed-constraint normal modes, " which may be regarded as static modes

produced by static loadings proportional to mass density times the function

itself). The external (inertia) force distribution within each substructure, as

computed from basic elastic relations, is a linear combination of the static

force functions used to compute the substructure displacement functions. Ac-

cordingly, if only a small number of "fixed constraint normal modes" are used

as substructure deformation functions, it is evident that the comparison of

inertia forces with external forces computed from elastic relations generally

cannot be very good, since the static loadings corresponding to such modes

are identically zero at the juncture nodes. Use of a large number of such

5
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normal modes will, of course, improve the quality of the inertia force ap-

proximation; however, this opposes the objective minimizing the number of

degrees of freedom.

To indicate the effectiveness of uniform acceleration modes, the example

shown on Fig., 1 was analyzed using four separate sets of substructure generalized

functions, as summarized on Table 1. The results, which were compared with

essentially exact solutions computed by the dynamic analysis version of SNAP,

are summarized on Table 2. Only symmetric modes were computed.

All four cases included complete sets of six rigid body motions and six

"restraint modes" (static functions corresponding to unit boundary motion

components). Additional functions used in each case are summarized in the

last four columns of Table 1, using the designations indicated below.

Uniform acceleration modes:

UX = Linear acceleration, direction X

UY = Linear acceleration, direction Y

UZ = Linear acceleration, direction Z

UX = Angular acceleration about axis X

UY = Angular acceleration about axis Y

UZ = Angular acceleration about axis Z

Fixed constraint normal modes:

NX1 First normal mode, bending in direction X

NX2 Second normal mode, bending in direction X

etc.

Each substructure contained three beam elements, as indicated in Table 1.

In the model used in the SNAP/Dynamics analysis, structural joints were located

at the ends of each of the beam elements.

6
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Table 1

SUBSTRUCTURE CHARACTERISTICS

· Moment of*Moment of Generalized Function Sets
Substructure Element Length Weight Area Inertia

(in. ) (lbs/in. ) (in. 2) (in. 4) CaseA Case B Case C Case DI~~~~~~~~~~~~~~~Cs I C IeBCseCCs
I~~~~~~~~~~~~~~~~, I ,., 

1 50 35 7.5 .5x10 UX NX1 UX NX1
1 2 100 35 20.5 .15 x 10 6 UZ NX2 UZ NX2

3 100 35 20.5 .15 x 10 6 UY UZ UY UZ

1 180 35 50.0 .34 x 10 6 UX NX1 UX NX1

I 3 130 920 70.0 .46 x 106 UY UZ

1 140 948 70.0 .46 x 106 UX NX1 UX NX1
c 3 2 80 119 70.0 .46 x 10 6 UZ NX2 UY NX2

3 80 119 70.0 .46 x 10 6 UY UZ

r-

1 100 119 70.0 .46 x 10 6 UX NX1 UX NX1
:x 4 2 100 119 70.0 .46 x 10 6 UY NX2 UY NX2

(n 3 100 119 70.0 .4 6 x 106

I 1 140 119 53.0 .46 x 106 UX NXl UX NX1
5 2 80 91 53.0 .46 x 10 6 UZ NX2 UY NX2

z 3 80 91 53.0 .46 x 106 UY UZ

2
2t~ ~1 100 91 53.0 .46 x 106 UX NX1 UX NX1

:O 6 2 100 35 53.0 .4 6 x 106 UZ NX2 UZ NX2
c, 3 100 35 53.0 .46 x 106 UY UZ UY UZ

o t

zI 1 100 14 42.0 .42 x 104 UX NX1 UX NX1
;U 7 2 100 12 36.0 .35 x 10 4 UZ NX2 UZ NX2

3 100 10 31.0 .28 x 10 4 UZ UZ UZ UZ

1 100 10 31.0 .28 x 104 UX NX1 UX NX1
8 2 100 8 26.0 .21x10 4 UY NX2 UY NX2

3 100 6 21.0 .14 x 104 UZ UY UZ UX2
UZ UZ UZ UZ

*Moments of inertia for substructures 7 and 8 are given about global axis Z. The moments of inertia about
........... . 1 1 _ I _> 

global axis X for these substructures were ten times those appearing in the table.



Table 1 (Continued)

*Moments of
Substructure Element Length Weight Arertia Generalized Function Sets

(in. ) (lbs/in.) (in. ) ( in. ) (in.ase A ase B CaseC Case D
_ _ . _ _. . _~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1
2
3

1
2
3

1
2
3

1
2
3

1
2
3

I
2
3

1
2
3

1
2
3

130
70
50

50
180
170

75
75
50

100
150
50

150
150
100

200
200
250

100
100
100

100
100
100

59
59
59

59
2659
2659

2659
2659
224

224
224
224

224
224
224

224
224
59

64
54
44

44
34
24

27.0
90.0
90.0

125.0
125.0
125.0

125.0
125.0
138.0

138.0
138.0
138.0

138.0
138.0
151.0

151.0
151.0
151.0

120.0
105.0
90.0

90.0
75.0
66.0

.56 x

.18 x

.18 x

10 6

10 7

107

.18 x 107

.25 x 107

.25 x 107

.25 x 107

.25 x 107

.28 x 107

.28 x 107

.28 x 107

.28 x 107

.28 x 107

.28 x 10 7

.30 x 107

.30 x 10 7

.30 x 107

.30 x 107

20 x 104
6x 10 4

5x 104

5 x
1.4 x
.66 x

104

104
104

UX
UZ
UY

UX
UZ
UY

UX
UZ
UY

UX
UY

UX
UY

UX
UZ
UY

UX
UZ
UZ

UX
UY
UZ
UZ

NX1
NX2
UZ

NX1
NX2
UZ

NX1
NX2
UZ

NX1
NX2

NX1
NX2

NX1
NX2
UZ

NX1
NX2
UZ

NX1
NX2
UY
UZ

UX
UZ
UY

UX
UY

UX
UY

UX
UY

UX
UY

UX
UY

UX
UZ
UZ

UX
UY
UZ
UZ

NX1
NX2
UZ

NX1
NX2

NX1
NX2

NX1
NX2

NX1
NX2

NX1
NX2

NX1
NX2
UZ

NX1
NX2
UY
UZ

*Moments of inertia for substructures 15 and 16 are given about global axis Z. The moments of inertia
about global axis X for these structures were ten times those appearing in the table.
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Table 2

COMPARISON OF SOLUTIONS

Ir

r
r

cn

r-I

Z

C)

0

rn
2C)Z
m
m

C)

m

o

Frequencies (Hz) Computed by Substructure Synthesis Program

Solutions Computed
Mode by SNAP/Dynamics - Case A Case B Case C Case D

4 2.16 2.1.6 2.16 2.16 2.16
5 2.69 2.69 2.69 2.69 2.69
6 5.40 5.40 5.40 5.40 5.40
7 5.63 5.63 5.63 5.63 5.63
8 6.82 6.82 6.82 6.82 6.82
9 7.75 7.75 7.75 7.83 7.83

10 9.21 9.21 9.21 9.47 9.47
11 11.16 11.16 11.16 11.17 11.17
12 11.29 11.29 11.29 11.33 11.33
13 14.79 14.79 14.79 14.83 14.83
14 16.01 16.04 16.04 17.21 17.21
15 17.69 17.72 17.72 18.89 18.89 t-J

Q

NC

0

cO
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Case A (lateral and longitudinal uniform acceleration modes) and Case B

(lateral normal modes, longitudinal uniform acceleration modes) gave results

practically identical to the almost exact solutions produced by SNAP/Dynamics.

Longitudinal uniform acceleration modes were not included for interior sub-

structures having uniform properties (i.e., substructures 4, 7, 12, 13, 15).

The results of Cases A and B are typical of similar comparisons involving

other types of finite element nets. Normal modes are generally much more

expensive to compute than uniform acceleration modes, but usually give equal

(or less accurate) results, unless the structure is modeled by only a few large

substructures.

Case C is the same as Case A, except that the longitudinal uniform accelera-

tion modes are omitted entirely. Case D is similarly related to Case B. The

effects of excluding all longitudinal uniform acceleration modes are most pro-

nounced in modes 10, 14, and 15.

Plots of the mode shapes are shown on Figs. 2 through 13.

11
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Fig. 2 - Mode 4, Frequency = 2.16 Hz

I... . ..

1. !

Fig. 3 - Mode 5, Frequency = 2.69 Hz
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Fig. 4 - Mode 6, Frequency = 5.40 Hz

TII

Fig. 5 - Mode 7, Frequency = 5.63 Hz
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Fig. 6 - Mode 8, Frequency = 6.82 Hz

I

Fig. 7 - Mode 9, Frequency = 7.75 Hz
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. · ::7 ......
Fig.8 - I 1 ..... ............ Sy' = 92 -H

a_3

Fig. 8 - Mode 10, Frequency = 9.21 Hz

_ I I .

I "L~~~~~I 1 

Fig.9 - Mode 11, Frequency:= 11.16 Hz
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,I 1 -3

I *

Fig. 10 - Mode 12, Frequency = 11.29 Hz

I -- .- I ..... .... .. 

I

Fig. 11 - Mode 13, Frequency = 14.79 Hz
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V
Fig. 12 - Mode 14, Frequency = 16.01 Hz

1

2 1 U

:~~~~~~~~ I 

Kk- -A-

Fig. 13 - Mode 15, Frequency = 17.69 Hz
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Section 3

TRANSIENT RESPONSE

The transient response of the space shuttle beam model shown in Fig. 1

was computed with the Substructure Synthesis program for a simulated pogo

excitation. A harmonic forcing function in the form of a Z-direction point

force was applied at location A (see Fig. 1) of the model. The forcing func-

tion is described on Fig. 14. The frequency of the forcing function is equal to

the frequency of the ninth system mode as tabulated in Table 2.

2

1

0 sec-

t = 0 sec
.1282 sec

t = .12892 sec

Fig. 14 - Forcing Function Representation
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0 .00000 0
1 .00806 19134
2 .01611 35355
3 .02417 46194
4 .03223 50000
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Mode shapes associated with system modes 4 through 11 (see Fig. 2-9)

were used as generalized displacement functions to characterize the response

of the system.

For calculating the individual substructure vibrational modes used in

determining the system damping matrix, all substructure boundary nodes,

except the node located at A (Fig. 1), were completely constrained. Boundary

node A was allowed to move freely in the global X-Z plane. Damping factors

(see Ref. 1, page B-16) of .005 and .01 were assumed for the first and second

modes, respectively, computed for each substructure relative to these boundary

node constraints.

The system response, A, is expressed as

n

% = L a.i i '
i=l 1

.th
where a. is the coefficient of the 1 generalized displacement function, (P.i
Figure 15 illustrates the time histories computed for coefficients of the gener-

alized functions corresponding to system modes 6 through 11 for three seconds

of the forced response. Similarly, Fig. 16 illustrates the direction-Z response

computed for points A through F shown on Fig. 1. Note that the curves in

Fig. 16 are all scaled to the same value (2.03 inches), while the curves in

Fig. 15 are scaled individually.

19
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Solid Curve
Coefficient of Mode 8
Max. Value = 0.19

Time in Seconds

Dotted Curve
Coefficient of Mode 11
Max. Value = 0.3 0

Solid Curve
Coefficient of Mode 7
Max. Value = 1.09

Time in Seconds

Dotted Curve
Coefficient of Mode 10
Max. Value = 2.33

Solid Curve
Coefficient of Mode 6
Max. Value = 0.17

Time in Seconds

Dotted Curve
Coefficient of Mode 9
Max. Value = 35.34

Fig. 15 - Time Histories of Generalized Displacement Function Coefficients
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2.03 inches

Solid Curve
Response of Point C

Time in Seconds

Dotted Curve
Response of Point Ff

-2.03 inches

2.03 inches

Solid Curve
Response of Point B

Time in Sec6nds

Dotted Curve
Response of Point E

-2.03 inches
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Solid Curve
Response of Point A
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Dotted Curve
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Fig. 16 - Direction-Z Response of Points A-F
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Section 4
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